Affiliation:
1. School of Pharmacy, Changzhou University, Changzhou 213164, China
2. School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
Abstract
Microbial contamination has caused various diseases via pathogenic bacteria, endangering people’s lives every day. Recently, increasing attention has been paid to the exploration of new and effective antibacterial materials. In this paper, we attempted to synthesize a fish scale charcoal nanosilver antibacterial composite using waste fish scale as a carbon substrate. X-ray diffraction, Fourier-transform infrared spectroscopy, thermogravimetry-differential scanning calorimetry, and scanning electron microscopy showed that the structure of the nanosilver fish scale material formed and the nanosilver particles formed account for 72.1% of the silver element. Its antibacterial ability against Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa was examined using the plate counting method and inhibition zones; the maximum inhibition zone was 32 mm. The antibacterial rate could reach >99.9%, indicating that this prepared material had excellent antibacterial activity. After 20 batches of bacteriostasis, the bacteriostasis rate was more than 90%, indicating that the fish scale/silver composite had sustained antibacterial ability and excellent antibacterial reusability. Finally, potential antibacterial mechanism was proposed. Overall, the fish scale/silver composite has a good application prospect and a wide range of applications in the handling of microbial pollution in the future.
Subject
Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献