Abstract
This manuscript introduces a new concept of statistical depth function: the compositional D-depth. It is the first data depth developed exclusively for text data, in particular, for those data vectorized according to a frequency-based criterion, such as the tf-idf (term frequency–inverse document frequency) statistic, which results in most vector entries taking a value of zero. The proposed data depth consists of considering the inverse discrete Fourier transform of the vectorized text fragments and then applying a statistical depth for functional data, D. This depth is intended to address the problem of sparsity of numerical features resulting from the transformation of qualitative text data into quantitative data, which is a common procedure in most natural language processing frameworks. Indeed, this sparsity hinders the use of traditional statistical depths and machine learning techniques for classification purposes. In order to demonstrate the potential value of this new proposal, it is applied to a real-world case study which involves mapping Consolidated Framework for Implementation and Research (CFIR) constructs to qualitative healthcare data. It is shown that the DDG-classifier yields competitive results and outperforms all studied traditional machine learning techniques (logistic regression with LASSO regularization, artificial neural networks, decision trees, and support vector machines) when used in combination with the newly defined compositional D-depth.
Funder
“Proyectos Puente 2022” from the Spanish Government of Cantabria
Instituto de Salud Carlos III
Basque Government Department of Health
Subject
General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献