Secure Authentication in the Smart Grid

Author:

Hosseinzadeh Mehdi,Ali Naqvi RizwanORCID,Safkhani MasoumehORCID,Tightiz LiliaORCID,Majid Mehmood RajaORCID

Abstract

Authenticated key agreement is a process in which protocol participants communicate over a public channel to share a secret session key, which is then used to encrypt data transferred in subsequent communications. LLAKEP, an authenticated key agreement protocol for Energy Internet of Things (EIoT) applications, was recently proposed by Zhang et al. While the proposed protocol has some interesting features, such as putting less computation on edge devices versus the server side, its exact security level is unclear. As a result, we shed light on its security in this paper through careful security analysis against various attacks. Despite the designers’ security claims in the random oracle model and its verification using GNY logic, this study demonstrates that this protocol has security weaknesses. We show that LLAKEP is vulnerable to traceability, dictionary, stolen smart glass, known session-specific temporary information, and key compromise impersonation attacks. Furthermore, we demonstrate that it does not provide perfect forward secrecy. To the best of our knowledge, it is the protocol’s first independent security analysis. To overcome the LLAKEP vulnerabilities, we suggested the LLAKEP+ protocol, based on the same set of cryptographic primitives, namely the one-way hash function and ECC point multiplication. Our comprehensive security analysis demonstrates its resistance to different threats, such as impersonation, privileged insider assaults, and stolen smart glass attacks, along with its resistance to sophisticated assaults, such as key compromised impersonation (KCI) and known session-specific temporary information (KSTI). The overhead of the proposed protocol is acceptable compared to the provided security level.

Funder

Xiamen University Malaysia

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference31 articles.

1. Energy Efficiency in the Future Internet: A Survey of Existing Approaches and Trends in Energy-Aware Fixed Network Infrastructures;Bolla;IEEE Commun. Surv. Tutor.,2011

2. An extensive survey on the Internet of Drones;Boccadoro;Ad Hoc Netw.,2021

3. A Survey of Honeypots and Honeynets for Internet of Things, Industrial Internet of Things, and Cyber-Physical Systems;Franco;IEEE Commun. Surv. Tutor.,2021

4. Survey on the Internet of Vehicles: Network Architectures and Applications;Ji;IEEE Commun. Stand. Mag.,2020

5. A Survey on Security Threats and Countermeasures in Internet of Medical Things (IoMT);Papaioannou;Trans. Emerg. Telecommun. Technol.,2022

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3