Availability Optimization Decision Support Design System for Different Repairable n-Stage Mixed Systems

Author:

Liu Gia-ShieORCID,Lin Kuo-PingORCID

Abstract

This study attempts to propose an availability optimization decision support design system for repairable n-stage mixed systems, in which different combinations of subsystems, such as parallel, standby, and k-out-of-q, are connected in series configuration. The enumeration method, tabu search, simulated annealing, non-equilibrium simulated annealing, and the modified redundancy allocation heuristic combined with a modified genetic algorithm will be proposed to solve the system availability optimization problem and further determine the appropriate system configuration design. Several simulated cases are conducted by following the procedural flow of the proposed availability optimization decision support design system to reach the optimal allocations of the component redundancy amount, the optimal repair rates, and the optimal failure rates of all subsystems to minimize the total system cost under several configuration constraints for different repairable n-stage mixed systems. Simulated results display that the proposed availability optimization decision support design system can definitely take advantage of different component redundancy system designs, including the parallel-series system, n-stage standby system, n-stage k-out-of-q system, and n-stage mixed system, to save a lot of cost and meet the high level of the system availability requirement compared to the n-stage single component series system. Additionally, the results for all proposed combined methods also show that the parallel-series system can obviously reach the same level of system availability requirement with less system total cost, in contrast to the n-stage standby system, by presuming the identical deteriorating probability for both the operating components and the standby components. The performance comparisons of five proposed combined methods for four proposed system configurations are analyzed comprehensively. It can be concluded that the performances of the modified redundancy allocation heuristic method, combined with a modified genetic algorithm on the criteria of the optimal system costs for four proposed system configurations, are not only superior to the other four combined methods, but also to the performances on the criteria of CPU running time for four proposed system configurations.

Funder

National Science and Technology Council of the Republic of China, Taiwan

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference27 articles.

1. Wang, Z.H. (1992). Reliability Engineering Theory and Practice, Taipei Quality Control Society of Republic of China. [5th ed.].

2. Blanchard, B.S. (1998). Logistics Engineering and Management, Prentice-Hall.

3. A knowledge management system for series–parallel availability optimization and design;Juang;Expert Syst. Appl.,2008

4. Availability allocation and multi-objective optimization for parallel–series systems;Chiang;Eur. J. Oper. Res.,2007

5. Yadav, G., Joshi, D., Gopinath, L., and Soni, M.K. (2022). Reliability and Availability Optimization of Smart Microgrid Using Specifific Configuration of Renewable Resources and Considering Subcomponent Faults. Energies, 15.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3