A Robust Learning Methodology for Uncertainty-Aware Scientific Machine Learning Models

Author:

Costa Erbet AlmeidaORCID,Rebello Carine de MenezesORCID,Fontana MárcioORCID,Schnitman LeizerORCID,Nogueira Idelfonso Bessa dos ReisORCID

Abstract

Robust learning is an important issue in Scientific Machine Learning (SciML). There are several works in the literature addressing this topic. However, there is an increasing demand for methods that can simultaneously consider all the different uncertainty components involved in SciML model identification. Hence, this work proposes a comprehensive methodology for uncertainty evaluation of the SciML that also considers several possible sources of uncertainties involved in the identification process. The uncertainties considered in the proposed method are the absence of a theory, causal models, sensitivity to data corruption or imperfection, and computational effort. Therefore, it is possible to provide an overall strategy for uncertainty-aware models in the SciML field. The methodology is validated through a case study developing a soft sensor for a polymerization reactor. The first step is to build the nonlinear model parameter probability distribution (PDF) by Bayesian inference. The second step is to obtain the machine learning model uncertainty by Monte Carlo simulations. In the first step, a PDF with 30,000 samples is built. In the second step, the uncertainty of the machine learning model is evaluated by sampling 10,000 values through Monte Carlo simulation. The results demonstrate that the identified soft sensors are robust to uncertainties, corroborating the consistency of the proposed approach.

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3