Spatial Computing in Modular Spiking Neural Networks with a Robotic Embodiment

Author:

Lobov Sergey A.ORCID,Mikhaylov Alexey N.ORCID,Berdnikova Ekaterina S.,Makarov Valeri A.ORCID,Kazantsev Victor B.

Abstract

One of the challenges in modern neuroscience is creating a brain-on-a-chip. Such a semiartificial device based on neural networks grown in vitro should interact with the environment when embodied in a robot. A crucial point in this endeavor is developing a neural network architecture capable of associative learning. This work proposes a mathematical model of a midscale modular spiking neural network (SNN) to study learning mechanisms within the brain-on-a-chip context. We show that besides spike-timing-dependent plasticity (STDP), synaptic and neuronal competitions are critical factors for successful learning. Moreover, the shortest pathway rule can implement the synaptic competition responsible for processing conditional stimuli coming from the environment. This solution is ready for testing in neuronal cultures. The neuronal competition can be implemented by lateral inhibition actuating over the SNN modulus responsible for unconditional responses. Empirical testing of this approach is challenging and requires the development of a technique for growing cultures with a given ratio of excitatory and inhibitory neurons. We test the modular SNN embedded in a mobile robot and show that it can establish the association between touch (unconditional) and ultrasonic (conditional) sensors. Then, the robot can avoid obstacles without hitting them, relying on ultrasonic sensors only.

Funder

Russian Science Foundation

Russian Foundation for Basic Research

Ministry of Science and Higher Education of the Russian Federation

Spanish Ministerio de Ciencia e Innovación

Santander-UCM

National Center for Physics and Mathematics

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The technology, opportunities, and challenges of Synthetic Biological Intelligence;Biotechnology Advances;2023-11

2. STRDP: A simple rule of rate dependent STDP;2023 7th Scientific School Dynamics of Complex Networks and their Applications (DCNA);2023-09-18

3. STDP-Driven Rewiring in Spiking Neural Networks under Stimulus-Induced and Spontaneous Activity;Biomimetics;2023-07-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3