A Provable Secure Cybersecurity Mechanism Based on Combination of Lightweight Cryptography and Authentication for Internet of Things

Author:

Ahmed Adel A.ORCID,Malebary Sharaf J.ORCID,Ali WaleedORCID,Alzahrani Ahmed A.ORCID

Abstract

Internet of Things devices, platform programs, and network applications are all vulnerable to cyberattacks (digital attacks), which can be prevented at different levels by using cybersecurity protocol. In the Internet of Things (IoT), cyberattacks are specifically intended to retrieve or change/destroy sensitive information that may exceed the IoT’s advantages. Furthermore, the design of a lightweight cybersecurity mechanism experiences a critical challenge that would perfectly fit resource-constrained IoT devices. For instance, identifying the compromised devices and the users’ data and services protection are the general challenges of cybersecurity on an IoT system that should be considered. This paper proposes a secure cybersecurity system based on the integration of cryptography with authentication (ELCA) that utilizes elliptic curve Diffie–Hellman (ECDH) to undertake key distribution while the weak bits problem in the shared secret key is resolved. In this paper, three systems of integration are investigated, while ELCA proposes secure integration between authentication and encryption to facilitate confidentiality and authenticity transfer messages between IoT devices over an insecure communication channel. Furthermore, the security of ELCA is proven mathematically using the random oracle model and IoT adversary model. The findings of the emulation results show the effectiveness of ELCA performance in terms of a reduced CPU execution time by 50%, reduced storage cost by 32–19.6%, and reduced energy consumption by 41% compared to the baseline cryptographic algorithms.

Funder

Ministry of Education and King Abdulaziz University, DSR, Jeddah, Saudi Arabia

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference44 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3