Optimized Fuzzy Logic Control System for Diver’s Automatic Buoyancy Control Device

Author:

Muškinja NenadORCID,Rižnar Matej,Golob MarjanORCID

Abstract

In this article, the design of a fuzzy logic control system (FLCS) in combination with multi-objective optimization for diver’s buoyancy control device (BCD) is presented. To either change or maintain the depth, the diver manually controls two pneumatic valves that are mounted on the inflatable diving jacket. This task can be very difficult, especially in specific diving circumstances such as poor visibility, safety stop procedures or critical life functions of the diver. The implemented BCD hardware automatically controls the diver’s depth by inflating or deflating the diver’s jacket with two electro-pneumatic valves. The FLCS in combination with the multi-objective optimization was used to minimize control error and simultaneously ensure minimal air supply consumption of the BCD. The diver’s vertical velocity is also critical, especially while the diver is ascending during the decompression procedure; therefore, a combination of depth and vertical velocity control was configured as a cascaded controller setup with outer proportional depth and inner FLCS vertical velocity control loops. The optimization of the FLCS parameters was achieved with differential evolution global optimum search algorithm. The results obtained were compared with the optimized cascaded position and velocity PID controller in simulations.

Funder

Slovenian Research Agency

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3