xRatSLAM: An Extensible RatSLAM Computational Framework

Author:

de Souza Muñoz Mauro EnriqueORCID,Chaves Menezes MatheusORCID,Pignaton de Freitas EdisonORCID,Cheng SenORCID,de Almeida Ribeiro Paulo RogérioORCID,de Almeida Neto AreolinoORCID,Muniz de Oliveira Alexandre CésarORCID

Abstract

Simultaneous localization and mapping (SLAM) refers to techniques for autonomously constructing a map of an unknown environment while, at the same time, locating the robot in this map. RatSLAM, a prevalent method, is based on the navigation system found in rodent brains. It has served as a base algorithm for other bioinspired approaches, and its implementation has been extended to incorporate new features. This work proposes xRatSLAM: an extensible, parallel, open-source framework applicable for developing and testing new RatSLAM variations. Tests were carried out to evaluate and validate the proposed framework, allowing the comparison of xRatSLAM with OpenRatSLAM and assessing the impact of replacing framework components. The results provide evidence that the maps produced by xRatSLAM are similar to those produced by OpenRatSLAM when they are fed with the same input parameters, which is a positive result, and that implemented modules can be easily changed without impacting other parts of the framework.

Funder

Fundação de Amparo à Pesquisa e ao Desenvolvimento Científico e Tecnológico do Maranhão

Coordenação de Aperfeicoamento de Pessoal de Nível Superior

National Council for Scientific and Technological Development

Deutsche Forschungsgemeinschaft

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference31 articles.

1. SLAM; definition and evolution;Taheri;Eng. Appl. Artif. Intell.,2021

2. Simultaneous localization and mapping: Part I;Durrant-Whyte;IEEE Robot. Autom. Mag.,2006

3. CBDF Based Cooperative Multi Robot Target Searching and Tracking Using BA;Sharma;Computational Intelligence in Data Mining,2015

4. Ngo, T.D. 13—Bio-inspired multi-robot systems. Biomimetic Technologies, 2015.

5. Calvo, R., de Oliveira, J.R., Figueiredo, M., and Romero, R.A.F. A distributed, bio-inspired coordination strategy for multiple agent systems applied to surveillance tasks in unknown environments. Proceedings of the 2011 International Joint Conference on Neural Networks.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3