Diffusion-Wave Type Solutions to the Second-Order Evolutionary Equation with Power Nonlinearities

Author:

Kazakov AlexanderORCID,Lempert AnnaORCID

Abstract

The paper deals with a nonlinear second-order one-dimensional evolutionary equation related to applications and describes various diffusion, filtration, convection, and other processes. The particular cases of this equation are the well-known porous medium equation and its generalizations. We construct solutions that describe perturbations propagating over a zero background with a finite velocity. Such effects are known to be atypical for parabolic equations and appear as a consequence of the degeneration of the equation at the points where the desired function vanishes. Previously, we have constructed it, but here the case of power nonlinearity is considered. It allows for conducting a more detailed analysis. We prove a new theorem for the existence of solutions of this type in the class of piecewise analytical functions, which generalizes and specifies the earlier statements. We find and study exact solutions having the diffusion wave type, the construction of which is reduced to the second-order Cauchy problem for an ordinary differential equation (ODE) that inherits singularities from the original formulation. Statements that ensure the existence of global continuously differentiable solutions are proved for the Cauchy problems. The properties of the constructed solutions are studied by the methods of the qualitative theory of differential equations. Phase portraits are obtained, and quantitative estimates are determined by constructing and analyzing finite difference schemes. The most significant result is that we have shown that all the special cases for incomplete equations take place for the complete equation, and other configurations of diffusion waves do not arise.

Funder

Ministry of Education and Science of the Russian Federation

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference37 articles.

1. Solutions to Nonlinear Evolutionary Parabolic Equations of the Diffusion Wave Type

2. Partial Differential Equations of Parabolic Type;Friedman,1964

3. Linear and Quasi-Linear Equations of Parabolic Type. Translations of Mathematical Monographs;Ladyzenskaja,1988

4. Degenerate Parabolic Equations

5. Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3