Abstract
This paper deals with the stabilization of a class of uncertain nonlinear ordinary differential equations (ODEs) with a dynamic controller governed by a linear 1−d heat partial differential equation (PDE). The control operates at one boundary of the domain of the heat controller, while at the other end of the boundary, a Neumann term is injected into the ODE plant. We achieve the desired global exponential stabilization goal by using a recent infinite-dimensional backstepping design for coupled PDE-ODE systems combined with a high-gain state feedback and domination approach. The stabilization result of the coupled system is established under two main restrictions: the first restriction concerns the particular classical form of our ODE, which contains, in addition to a controllable linear part, a second uncertain nonlinear part verifying a lower triangular linear growth condition. The second restriction concerns the length of the domain of the PDE which is restricted.
Subject
General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)