Responses of Macroinvertebrate Community Temporal Dissimilarity and Abundance to the Water Level Fluctuation Range in a Shallow Lake

Author:

Yan Shengjun,Sun Tao,Wang Xuan,Liu Dan,Zhang Yunlong,Yang Zhifeng

Abstract

Variations in the hydrological regime are among the anthropogenic pressures affecting biological assemblage structure in shallow freshwater lakes. We estimated the effects of the water level fluctuation range on the temporal dissimilarity of the macroinvertebrate community by sampling benthic macroinvertebrate assemblages monthly in 2017 and bimonthly in 2018. Then, we applied a boosted regression trees (BRT) model to quantitatively analyzing the relationship between macroinvertebrate abundance and microhabitat factors in different seasons. To distinguish differences in water level fluctuations at the sample site scale, we proposed a variable, namely, the percentage of water level fluctuation range (PWLFR). The results were as follows. (1) An increased water level fluctuation range would lead to more temporally heterogeneous macroinvertebrate communities. Temporal dissimilarity of macroinvertebrates increased linearly in response to increasing water level fluctuation range. (2) Species abundance presented seasonal characteristics, and the dominant factors affecting species abundance varied with the seasons. PWLFR was the dominant variable explaining macroinvertebrate abundance in summer. Macroinvertebrate abundance showed positive effects with increasing PWLFR. (3) The interaction between chlorophyll a and PWLFR in summer promoted an increase in macroinvertebrate abundance. These findings may provide a basis for the formulation of effective ecological water replenishment management decisions aimed at maintaining the stability of shallow lake ecosystems in arid and semi-arid regions.

Funder

National Natural Science Foundation of China

Chinese National key research and development program

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3