Assessing Multi-Temporal Global Urban Land-Cover Products Using Spatio-Temporal Stratified Sampling

Author:

Gong Yali,Xie Huan,Jin Yanmin,Tong Xiaohua

Abstract

In recent years, the availability of multi-temporal global land-cover datasets has meant that they have become a key data source for evaluating land cover in many applications. Due to the high data volume of the multi-temporal land-cover datasets, probability sampling is an efficient method for validating multi-temporal global urban land-cover maps. However, the current accuracy assessment methods often work for a single-epoch dataset, and they are not suitable for multi-temporal data products. Limitations such as repeated sampling and inappropriate sample allocation can lead to inaccurate evaluation results. In this study, we propose the use of spatio-temporal stratified sampling to assess thematic mappings with respect to the temporal changes and spatial clustering. The total number of samples in the two stages, i.e., map and pixel, was obtained by using a probability sampling model. Since the proportion of the area labeled as no change is large while that of the area labeled as change is small, an optimization algorithm for determining the sample sizes of the different strata is proposed by minimizing the sum of variance of the user’s accuracy, producer’s accuracy, and proportion of area for all strata. The experimental results show that the allocation of sample size by the proposed method results in the smallest bias in the estimated accuracy, compared with the conventional sample allocation, i.e., equal allocation and proportional allocation. The proposed method was applied to multi-temporal global urban land-cover maps from 2000 to 2010, with a time interval of 5 years. Due to the spatial aggregation characteristics, the local pivotal method (LPM) is adopted to realize spatially balanced sampling, leading to more representative samples for each stratum in the spatial domain. The main contribution of our research is the proposed spatio-temporal sampling approach and the accuracy assessment conducted for the multi-temporal global urban land-cover product.

Funder

National Natural Science Foundation of China

National Key Research and Development of China

Dawn Scholar of Shanghai

Fundamental Research Funds for the Central Universities of China

Publisher

MDPI AG

Subject

Earth and Planetary Sciences (miscellaneous),Computers in Earth Sciences,Geography, Planning and Development

Reference51 articles.

1. An Ontology-Based Framework for Integrating Remote Sensing Imagery, Image Products, and In Situ Observations

2. Monitoring progress towards Sustainable Development Goals—The role of land monitoring;Mora;Proceedings of the 5th GEOSS Science and Technology Stakeholder Workshop—Linking the Sustainable Development Goals to Earth Observations, Models and Capacity Building,2016

3. Sampling designs for accuracy assessment of land cover

4. The effect of spatial autocorrelation and class proportion on the accuracy measures from different sampling designs

5. Uncertainties in landscape analysis and ecosystem service assessment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3