Object-Based Automatic Mapping of Winter Wheat Based on Temporal Phenology Patterns Derived from Multitemporal Sentinel-1 and Sentinel-2 Imagery

Author:

Wang LimeiORCID,Jin Guowang,Xiong Xin,Zhang Hongmin,Wu Ke

Abstract

Although winter wheat has been mapped by remote sensing in several studies, such mapping efforts did not sufficiently utilize contextual information to reduce the noise and still depended heavily on optical imagery and exhausting classification approaches. Furthermore, the influence of similarity measures on winter wheat identification remains unclear. To overcome these limitations, this study developed an object-based automatic approach to map winter wheat using multitemporal Sentinel-1 (S1) and Sentinel-2 (S2) imagery. First, after S1 and S2 images were preprocessed, the Simple Non-Iterative Clustering (SNIC) algorithm was used to conduct image segmentation to obtain homogeneous spatial objects with a fusion of S1 and S2 bands. Second, the temporal phenology patterns (TPP) of winter wheat and other typical land covers were derived from object-level S1 and S2 imagery based on the collected ground truth samples, and two improved distance measures (i.e., a composite of Euclidean distance and Spectral Angle Distance, (ESD) and the difference–similarity factor distance (DSF)) were built to evaluate the similarity between two TPPs. Third, winter wheat objects were automatically identified from the segmented spatial objects by the maximum between-class variance method (OTSU) with distance measures based on the unique TPP of winter wheat. According to ground truth data, the DSF measure was superior to other distance measures in winter wheat mapping, since it achieved the best overall accuracy (OA), best kappa coefficient (Kappa) and more spatial details for each feasible band (i.e., NDVI, VV, and VH/VV), or it obtained results comparable to those for the best one (e.g., NDVI + VV). The resultant winter wheat maps derived from the NDVI band with the DSF measure achieved the best accuracy and more details, and had an average OA and Kappa of 92% and 84%, respectively. The VV polarization with the DSF measure produced the second best winter wheat maps with an average OA and Kappa of 91% and 80%, respectively. The results indicate the great potential of the proposed object-based approach for automatic winter wheat mapping for both optical and Synthetic Aperture Radar (SAR) imagery.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Earth and Planetary Sciences (miscellaneous),Computers in Earth Sciences,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3