Recognition and Grasping of Disorderly Stacked Wood Planks Using a Local Image Patch and Point Pair Feature Method

Author:

Xu Chengyi,Liu Ying,Ding Fenglong,Zhuang Zilong

Abstract

Considering the difficult problem of robot recognition and grasping in the scenario of disorderly stacked wooden planks, a recognition and positioning method based on local image features and point pair geometric features is proposed here and we define a local patch point pair feature. First, we used self-developed scanning equipment to collect images of wood boards and a robot to drive a RGB-D camera to collect images of disorderly stacked wooden planks. The image patches cut from these images were input to a convolutional autoencoder to train and obtain a local texture feature descriptor that is robust to changes in perspective. Then, the small image patches around the point pairs of the plank model are extracted, and input into the trained encoder to obtain the feature vector of the image patch, combining the point pair geometric feature information to form a feature description code expressing the characteristics of the plank. After that, the robot drives the RGB-D camera to collect the local image patches of the point pairs in the area to be grasped in the scene of the stacked wooden planks, also obtaining the feature description code of the wooden planks to be grasped. Finally, through the process of point pair feature matching, pose voting and clustering, the pose of the plank to be grasped is determined. The robot grasping experiment here shows that both the recognition rate and grasping success rate of planks are high, reaching 95.3% and 93.8%, respectively. Compared with the traditional point pair feature method (PPF) and other methods, the method present here has obvious advantages and can be applied to stacked wood plank grasping environments.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3