Genomic Prediction of Tree Height, Wood Stiffness, and Male Flower Quantity Traits across Two Generations in Selected Individuals of Cryptomeria japonica D. Don (Japanese Cedar)

Author:

Ejima Atsushi12,Uchiyama Kentaro3,Mori Hideki3ORCID,Tsumura Yoshihiko4ORCID

Affiliation:

1. Saga Prefectural Forest Experimental Station, Ikenoue, Yamato, Saga 840-0212, Japan

2. Graduate School of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Tsukuba 305-8572, Japan

3. Forestry and Forest Products Research Institute, 1 Matsunosato, Ibaraki, Tsukuba 305-8687, Japan

4. Faculty of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Tsukuba 305-8572, Japan

Abstract

Breeding long-lived trees is challenging, but it has been shown that genomic information can be used to improve efficiency. In this study, genomic prediction (GP) was tested on selected individuals of a two-generation breeding population of Cryptomeria japonica, the most common plantation tree in Japan. In the 1980s, the second-generation plus trees (101 clones) were selected from about 8500 individuals obtained by cross-mating the first-generation plus trees (47 clones). RAD-seq based on 8664 SNPs was used to perform GP for three important traits in this population: tree height, wood stiffness, and male flower quantity. The association between traits and genotypes was modeled using five Bayesian models whose predictive accuracy was evaluated by cross-validation, revealing that the best model differed for each trait (BRR for tree height, BayesA for wood stiffness, and BayesB for male flower quantity). GP was 1.2–16.0 times more accurate than traditional pedigree-based methods, attributed to its ability to model Mendelian sampling. However, an analysis of the effects of intergenerational kinship showed that parent–offspring relationships reduce the predictive accuracy of GP for traits strongly affected by selection pressure. Overall, these results show that GP could significantly expedite tree breeding when supported by a deep understanding of the targeted population’s genetic background.

Funder

Agriculture, Forestry and Fisheries Research Council of Japan

JSPS KAKENHI program

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3