Thinning Combined with Prescribed Burn Created Spatially Heterogeneous Overstory Structures in Contemporary Dry Forests: A Comparison Using LiDAR (2016) and Field Inventory (1934) Data

Author:

Nepal Sushil1,Eskelson Bianca N. I.1ORCID,Ritchie Martin W.2,Gergel Sarah E.3ORCID

Affiliation:

1. Department of Forest Resources Management, The University of British Columbia, 2424 Main Mall, Vancouver, BC V6T 1Z4, Canada

2. USDA, Forest Service Pacific Southwest Research Station, 3644 Avtech Parkway, Redding, CA 96002, USA

3. Department of Forest and Conservation Sciences, The University of British Columbia, 2424 Main Mall, Vancouver, BC V6T 1Z4, Canada

Abstract

Restoring current ponderosa pine (Pinus ponderosa Dougl. Ex P. and C. Laws)-dominated forests (also known as “dry forests”) to spatially resilient stand structures requires an adequate understanding of the overstory spatial variation of forests least impacted by Euro-American settlers (also known as “reference conditions”) and how much contemporary forests (2016) deviate from reference conditions. Because of increased tree density, dry forests are more spatially homogeneous in contemporary conditions compared to reference conditions, forests minimally impacted by Euro-American settlers. Little information is available that can be used by managers to accurately depict the spatial variation of reference conditions and the differences between reference and contemporary conditions. Especially, forest managers need this information as they are continuously designing management treatments to promote contemporary dry forest resiliency against fire, disease, and insects. To fill this knowledge gap, our study utilized field inventory data from reference conditions (1934) along with light detection and ranging and ground-truthing data from contemporary conditions (2016) associated with various research units of Blacks Mountain Experimental Forest, California, USA. Our results showed that in reference conditions, above-ground biomass—a component of overstory stand structure—was more spatially heterogeneous compared to contemporary forests. Based on semivariogram analyses, the 1934 conditions exhibited spatial variation at a spatial scale < 50 m and showed spatial autocorrelation at shorter ranges (150–200 m) compared to those observed in contemporary conditions (>250 m). In contemporary conditions, prescribed burn with high structural diversity treatment enhanced spatial heterogeneity as indicated by a greater number of peaks in the correlograms compared to the low structural diversity treatment. High structural diversity treatment units exhibited small patches of above-ground biomass at shorter ranges (~120 to 440 m) compared to the low structural diversity treatment units (~165 to 599 m). Understanding how spatial variation in contemporary conditions deviates from reference conditions and identifying specific management treatments that can be used to restore spatial variation observed in reference conditions will help managers to promote spatial variation in stand structure that has been resilient to wildfire, insects, and disease.

Funder

USDA Forest Service, Pacific Southwest Research Station

UBC four-year fellowship (4YF) program

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3