Impact of Canopy Coverage and Morphological Characteristics of Trees in Urban Park on Summer Thermal Comfort Based on Orthogonal Experiment Design: A Case Study of Lvyin Park in Zhengzhou, China

Author:

Xue Sihan1,Chao Xinfeng1,Wang Kun2,Wang Jingxian2,Xu Jingyang1,Liu Ming1,Ma Yue3

Affiliation:

1. School of Architecture, Zhengzhou University, Zhengzhou 450001, China

2. College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou 450002, China

3. Department of Earth System Science, Tsinghua University, Beijing 100084, China

Abstract

As an integral part of urban forests, urban parks play a vital role in mitigating urban heat islands (UHI) and providing residents with comfortable outdoor recreational plots. For high-quality use of the trees in regulating the thermal comfort of urban parks, previous studies primarily focused on the microclimate variations caused by tree coverage and morphological features separately. However, there is still a lack of systematic understanding of how tree canopy coverage (TCC) and its morphological elements, including leaf area index (LAI), trunk height (TH), and crown diameter (CD), combined affect the thermal comfort in the urban park. This study employed an orthogonal experiment design and ENVI-met software to simulate the microclimate of various multi-factor combination models in the case of a typical urban park in a temperate continental climate zone in China, analyzing the simulated result through physiological equivalent temperature (PET). Results show that the contribution ratio of various elements to the thermal environment vary over time. In studied elements, the contribution ratio of TCC to PET is consistently higher than 50% during the morning, midday, and evening periods, reaching a peak of 67% in the evening. The maximum contribution ratios for CD, TH, and LAI occur during midday, morning, and midday, respectively, with corresponding contribution ratios of approximately 22%, 10%, and 9%, respectively. The ranking of elements affecting thermal comfort in the urban park generally is TCC, CD, LAI, TH throughout the day, apart from the morning, when the influence of TH is greater than LAI. The optimal combination of elements is 85% TCC, 4m TH, 3.9 LAI, and 7m CD, and thirteen combinations of element cases meet the thermal comfort requirements during summer. The research findings highlight the significance of optimizing the configuration of trees in creating a more comfortable and inviting space for human activities.

Funder

The National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Forestry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3