Detection of Changes in Buildings in Remote Sensing Images via Self-Supervised Contrastive Pre-Training and Historical Geographic Information System Vector Maps

Author:

Feng Wenqing1ORCID,Guan Fangli1,Tu Jihui2,Sun Chenhao3,Xu Wei14

Affiliation:

1. Computer & Software School, Hangzhou Dianzi University, Hangzhou 310018, China

2. Electronics & Information School, Yangtze University, Jingzhou 434023, China

3. Electrical & Information Engineering School, Changsha University of Science & Technology, Changsha 410114, China

4. Information System and Management College, National University of Defense Technology, Changsha 410015, China

Abstract

The detection of building changes (hereafter ‘building change detection’, BCD) is a critical issue in remote sensing analysis. Accurate BCD faces challenges, such as complex scenes, radiometric differences between bi-temporal images, and a shortage of labelled samples. Traditional supervised deep learning requires abundant labelled data, which is expensive to obtain for BCD. By contrast, there is ample unlabelled remote sensing imagery available. Self-supervised learning (SSL) offers a solution, allowing learning from unlabelled data without explicit labels. Inspired by SSL, we employed the SimSiam algorithm to acquire domain-specific knowledge from remote sensing data. Then, these well-initialised weight parameters were transferred to BCD tasks, achieving optimal accuracy. A novel framework for BCD was developed using self-supervised contrastive pre-training and historical geographic information system (GIS) vector maps (HGVMs). We introduced the improved MS-ResUNet network for the extraction of buildings from new temporal satellite images, incorporating multi-scale pyramid image inputs and multi-layer attention modules. In addition, we pioneered a novel spatial analysis rule for detecting changes in building vectors in bi-temporal images. This rule enabled automatic BCD by harnessing domain knowledge from HGVMs and building upon the spatial analysis of building vectors in bi-temporal images. We applied this method to two extensive datasets in Liuzhou, China, to assess its effectiveness in both urban and suburban areas. The experimental results demonstrated that our proposed approach offers a competitive quantitative and qualitative performance, surpassing existing state-of-the-art methods. Combining HGVMs and high-resolution remote sensing imagery from the corresponding years is useful for building updates.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3