A First Step towards Meteosat Third Generation Day-2 Precipitation Rate Product: Deep Learning for Precipitation Rate Retrieval from Geostationary Infrared Measurements

Author:

D’Adderio Leo Pio1,Casella Daniele1ORCID,Dietrich Stefano1ORCID,Panegrossi Giulia1,Sanò Paolo1ORCID

Affiliation:

1. National Research Council of Italy, Institute of Atmospheric Sciences and Climate (CNR-ISAC), 00133 Rome, Italy

Abstract

The estimate of precipitation from satellite measurements is an indirect estimate if compared to rain gauges or disdrometer measurements, but it has the advantage of complete coverage over oceans, mountainous regions, and sparsely populated areas where other sources of precipitation data (e.g., weather radar) are unavailable or unreliable. Among the satellite-based precipitation estimates, geostationary (GEO) data ensure the highest spatial and temporal resolution. At the same time, the IR/VIS channels deployed on GEO satellites have lower capabilities than microwave (MW) channels in characterizing the cloud structure. Machine learning (ML) techniques can be considered a powerful tool to overcome the limitations related to the physical relationship between IR/VIS channels and precipitation estimation. This study describes the development of a convolutional neural network (U-Net) to retrieve the precipitation rate using IR measurements only from the Meteosat Second Generation (MSG) satellite. Its performances are evaluated through a comparison with H SAF and NASA operational products (e.g., H60B or H03B and IMERG-E, respectively), of which the algorithms are based on different principles. The results highlight a lower error in precipitation rate estimates for the U-Net with respect to the other products but also some issues in correctly estimating the more intense precipitation (>5 mmh−1). On the other hand, the precipitation detection capabilities of the U-Net outperform the H SAF products for lower precipitation rate, while IMERG-E shows the best performance regardless of the precipitation regime. Furthermore, the U-Net is able to account for and correct the parallax displacement that affects the measurement as the satellite viewing angle increases.

Funder

EUMETSAT Satellite Application Facility for Hydrology and Water Management (H SAF) Third Continuous Development and Operation Phase

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3