Interannual Variability of Salinity in the Chukchi Sea and Its Relationships with the Dynamics of the East Siberian Current during 1993–2020

Author:

Zhuk Vladislav R.1ORCID,Kubryakov Arseny A.1ORCID

Affiliation:

1. Federal State Budget Scientific Institution, Marine Hydrophysical Institute of RAS, 299011 Sevastopol, Russia

Abstract

The interannual features of the salinity in the Chukchi Sea during the ice-free period of a year are investigated on the base of Soil Moisture Active Passive (SMAP) satellite measurements and GLORYS12v1 reanalysis data. Analysis of salinity measurements revealed two types of Bering Summer Waters (BSW) propagation: “western” and “eastern”. The first is characterized by the penetration of Pacific waters into the northwest part of the sea, as well as the propagation of BSW to 180°W and 72.5°N. During the “eastern” type, salty waters are pressed to the eastern part of the shelf. Their area decreases and the northern boundary of the BSW area shifts to 174–176°W. Areas with low salinity, ~29 psu, are observed in the western part of the sea. Our study reveals that the formation of these types is affected not only by the inflow of Pacific waters through the Bering Strait but also by the East Siberian Current (ESC). Both factors are related and lead to correlated changes in the salinity of the Chukchi Sea waters. ESC carries Arctic freshwaters from west to east and leads to a decrease in salinity in the western part of the sea. At the same time, southward ESC caused the blockage of the northward currents in the Bering Strait and a decrease in the influx of saline Pacific waters in the southern part of the Chukchi Sea. The intensification of ESC occurred in 1994, 2002, 2012, and 2016, when the volume transport of ESC increased by approximately 0.2 Sv, while the influx through the Bering Strait decreased. As a result, in the years with intense ESC, the spatial structure of the salinity of the Chukchi Sea changed significantly and the shelf-averaged salinity decreased by 0.3–0.5 psu.

Funder

Russian Science Foundation

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3