Experimental Determination of the Ionospheric Effects and Cycle Slip Phenomena for Galileo and GPS in the Arctic

Author:

Beeck S.S.1ORCID,Mitchell C.N.2ORCID,Jensen A.B.O.13ORCID,Stenseng L.14ORCID,Pinto Jayawardena T.5,Olesen D.H.1ORCID

Affiliation:

1. Department of Space Research and Technology, Technical University of Denmark, Building 328 Elektrovej, 2800 Kongens Lyngby, Denmark

2. Department of Electronic and Electrical Engineering, University of Bath, Bath BA1 7AY, UK

3. AJ Geomatics, 4000 Roskilde, Denmark

4. Peak Wind, Mikkel Bryggers Gade 4, 1460 Copenhagen, Denmark

5. Athena Space Limited, Torquay TQ2 7TD, UK

Abstract

The ionosphere can impair the accuracy, availability and reliability of satellite-based positioning, navigation and timing. The Arctic region is particularly affected by strong ionospheric gradients and phase scintillation, posing a safety issue for critical infrastructure and operations. Ionospheric warning and impact maps can provide support to Arctic operations, but to produce such maps threshold values have to be determined. This study investigates how such thresholds can be derived from the GPS and Galileo satellite signals. Rapid changes in total electron content (TEC) or scintillation-induced receiver tracking errors could result in cycle slips or even loss of lock. Cycle slips and data outages are used as a measure of impact on the receiver in this paper. For Galileo, 73.6% of the impacts were cycle slips and 26.4% were outages, while for GPS, 29.3% of the impacts were cycle slips and 70.7% were outages. Considering the sum of cycle slips and outages, it is worth noting that the sum of impacts for Galileo signals is larger than for GPS. A range of possible explanations have been examined through hardware-in-the-loop simulations. The simulations showed that the GPS L2 signal was not adequately tracked during rapid TEC changes and TEC changes were underestimated, thus the GPS cycle slips, derived from L1 and L2 derived TEC changes, were not all registered. These results are important in designing threshold values for TEC and for scintillation impact maps as well as for the operation of GNSS equipment in the Arctic. In particular, the results show that ionospheric changes could be underestimated if GPS L1 and L2 were used in isolation from other dual frequency combinations. It is the first time this analysis has been made for Greenland and the first time that the dual frequency derivation of ionospheric delay using GPS L1 and L2 has been shown to underestimate large TEC gradients. This has important implications for informing GNSS operations that rely on GPS to provide reliable estimates of the ionosphere.

Funder

NERC

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3