Author:
Yang Min,Wang Tao,Guo Chunji,Ellis Chris,Liao Yuefeng
Abstract
In this paper, a particular form of flywheel hybrid powertrain, namely, the Integrated Kinetic Energy Recoup Drive (i-KERD) is fully explored and its applications for EVs, HEVs and FCEVs in recent years to show the energy-savings and performance enhancement potential of this innovative powertrain technology. It is shown that the i-KERD is a small highspeed flywheel integrated into an e-CVT, or power-split hybrid drive. Under NEDC or WLTC, typically it can achieve some 40% energy savings and >50% gain in 0–100 kph acceleration due to effective regenerative braking mechanism of the integrated flywheel power system. In addition to its “peak-shaving” capability, the highly-efficient, long-life flywheel power on-board, is able to keep the kinetic energy of the vehicle fully recycled, rather than dissipated during braking. The i-KERD technology has also been applied to urban railway transportation (i.e., underground railway) and off-road heavy construction equipment, where regenerative braking plays a great role on energy efficiency.
Reference19 articles.
1. Flywheel ESS and Flywheel Power Drive;Liao,2019
2. Research on flywheel energy storage system and its controlling technique;Jiancheng;Proc. CSEE,2003
3. Electro-Mechanical EV Powertrain With Reduced Volt-Ampere Rating
4. Flywheel batteries come around again;Robert;IEEE Spectr.,2002
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献