Optimization and Analysis of Electric Vehicle Operation with Fast-Charging Technologies

Author:

Al-Saadi MohammedORCID,Mathes Manuel,Käsgen Johannes,Robert Koffrie,Mayrock Matthias,Mierlo Joeri VanORCID,Berecibar Maitane

Abstract

This work presents three demos, which include Electric Buses (EBs) from four various brands with lengths of 12 m and 18 m and an Electric Truck (E-truck) for refuse collection. The technical operation of these EVs were analyzed to implement further operational cost optimization on the demo vehicles. The Electric Vehicles (EVs) were tested against superfast-charging solutions based on Pantograph (Type A & Type B) on the route lines (and depots) and based on Combined Charging System Type 2 (CCS2, Combo2) from various brands to validate the interoperability among several vendors and support further EV integration with more affordable solutions. The optimization includes the calculation of the EBs’ consumption at various seasons and under various operating conditions in order to use optimum battery system design, heating system, optimum EB fleet operation and size and to find the charging solutions properly. The results showed that the EB consumption increases in some cases by 64.5% in wintertime due to heating systems, and the consumption in urban areas is more than that on the route lines outside cities. In the E-truck demo, where the electric heater was replaced with a heat-pump to optimize the energy consumption, it was found that the consumption of the heat-pump is about half of the electric heater under certain operating conditions. Under strict EB schedule, Pantograph charging solutions with power ratings of 300–600 kW have been adopted to charge the batteries of the EBs within 4–10 min. In order to minimize the cumulative costs of energy, (pantograph) charging infrastructure depreciation and battery degradation, as well as depot charging (at the bus operator’s depot), was adopted with a power level of 50–350 kW based on CCS2 and pantograph.

Funder

European Commission

Publisher

MDPI AG

Subject

Automotive Engineering

Reference16 articles.

1. Electric Bus in Mena;Smadi,2020

2. Towards the inductive on-road charging system for electric buses: Inspection of the Hungarian electric mobility fleet

3. Position Paper—Heavy-Duty Vehicles: Charging and Refuelling Infrastructure Requirementshttps://www.acea.auto/publication/position-paper-heavy-duty-vehicles-charging-and-refuelling-infrastructure-requirements/

4. Charging Network Planning for Electric Bus Cities: A Case Study of Shenzhen, China

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3