Virtualization of Industrial Real-Time Networks for Containerized Controllers

Author:

Lee Sang-Hun,Kim Jong-Seo,Seok Jong-Soo,Jin Hyun-WookORCID

Abstract

The virtualization technology has a great potential to improve the manageability and scalability of industrial control systems, as it can host and consolidate computing resources very efficiently. There accordingly have been efforts to utilize the virtualization technology for industrial control systems, but the research for virtualization of traditional industrial real-time networks, such as Controller Area Network (CAN), has been done in a very limited scope. Those traditional fieldbuses have distinguished characteristics from well-studied Ethernet-based networks; thus, it is necessary to study how to support their inherent functions transparently and how to guarantee Quality-of-Service (QoS) in virtualized environments. In this paper, we suggest a lightweight CAN virtualization technology for virtual controllers to tackle both functionality and QoS issues. We particularly target the virtual controllers that are containerized with an operating-system(OS)-based virtualization technology. In the functionality aspect, our virtualization technology provides virtual CAN interfaces and virtual CAN buses at the device driver level. In the QoS perspective, we provide a hierarchical real-time scheduler and a simulator, which enable the adjustment of phase offsets of virtual controllers and tasks. The experiment results show that our CAN virtualization has lower overheads than an existing approach up to 20%. Moreover, we show that the worst-case end-to-end delay could be reduced up to 78.7% by adjusting the phase offsets of virtual controllers and tasks.

Funder

Ministry of Science, ICT and Future Planning

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference56 articles.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3