Study on Passive Ventilation and Cooling Strategies for Cold Lanes and Courtyard Houses—A Case Study of Rural Traditional Village in Shaanxi, China

Author:

Yao XingboORCID,Dewancker Bart J.ORCID,Guo Yuang,Han Shuo,Xu Juan

Abstract

China’s research on and specific implementation of energy saving for buildings are mainly concentrated in urban areas, but according to 2016 statistics, the rural population accounts for 42.65% of the total population, so rural housing has considerable energy-saving potential. However, the degree of attention to the energy consumption of rural houses needs to be improved. Regarding the research on and implementation of passive energy-saving strategies for residences, compared with centralized urban high-rise residences, rural residences mainly have independent courtyards, with a flexible layout and easier transformation. In this study, a system that uses the common cold lanes in traditional villages and buildings’ exterior walls was constructed, and the indoor spaces of courtyard buildings in southern Shaanxi were completely passively cooled in summer. This system can be completely separated from the supply of artificial energy by relying on the accumulation and buoyancy effects of air in patios and cold lanes and the hot-pressure ventilation in buildings to cool the buildings and greatly improve indoor ventilation efficiency. As the building is ventilated and cooled, the air wall formed in the system can effectively prevent direct contact between the outdoor and indoor temperatures and reduce the impact of thermal wall radiation on the interior. In previous studies on the passive design of courtyard houses, scholars considered the effect of thermal wall radiation on indoor temperature in simulations. Therefore, in this study, we also separately calculated whether to consider the difference between the situation with and without wall heat radiation (WHR) when simulating thermal conversion. The final results show that when the cooling system was adopted, the annual cooling load of the whole building was 4786.494 kW·h without WHR. However, with WHR, the cooling load reduction was 2989.128 kW·h, a difference of 1797.336 kW·h.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Reference60 articles.

1. Energy: demand, conservation and institutional problems

2. IEA Online Data Serviceshttps://www.iea.org/subscribe-to-data-services/world-energy-balances-and-statistics

3. The 2015 Paris Climate Change Conference: Cop21

4. The Guardianhttps://www.theguardian.com/environment/2015/oct/26/cold-economy-cop21-global-warming-carbon-emissions

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3