Investigation on a Shutdown Control Strategy with Residual Oxygen Rapid Elimination for Proton Exchange Membrane Fuel Cell System

Author:

Fan Jing1,Yang Yanbo2,Ma Tiancai23,Zhu Dong2ORCID,Xu Xinru2

Affiliation:

1. Wuhan Institute of Marine Electric Propulsion, Wuhan 430070, China

2. School of Automotive Studies, Tongji University, Shanghai 201804, China

3. Institute of Carbon Neutrality, Tongji University, Shanghai 200092, China

Abstract

During the shutdown process of the fuel cell system for vehicles, the air entering the anode chamber can form the hydrogen/air interface, accelerating the carbon corrosion of the catalytic layer. According to optimized control strategies, the carbon corrosion of fuel cells can be reduced. Nowadays, the main control strategies include gas purging and the consumption of residual oxygen in the stack by the auxiliary load. However, the oxygen in the fuel cell stack cannot be fully consumed or can cause the single-cell voltage to rise to 0.8 V with an inappropriate discharge current drop rate and auxiliary load resistance value, thus affecting the protective effect of the shutdown strategy. In this work, a shutdown strategy of the fuel cell system is studied. After the experiment, the optimized value of the discharge current drop rate and the auxiliary load resistance were obtained. With the resistance value of 50 Ω and the current drop rate of 7 A/s, the shutdown time of the fuel cell system is 13.5 s and the time of single-cell voltage above 0.82 V in the fuel cell stack is 0.1 s. Thus, the optimized shutdown strategy can reduce the shutdown time.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3