Design Enhancement of Eductor for Active Vapor Transport and Condensation during Two-Phase Single-Species Flow

Author:

Koirala Ravi1ORCID,Ve Quoc Linh2,Rupakheti Eliza1,Inthavong Kiao1ORCID,Date Abhijit1ORCID

Affiliation:

1. School of Engineering, RMIT University, Melbourne, VIC 3083, Australia

2. Faculty of Engineering and Food Technology, University of Agriculture and Forestry, Hue University, Thua Thien Hue 530000, Vietnam

Abstract

This study is focused on enhancing secondary vapor entrainment and direct-contact condensation in a water jet eductor for the purpose of developing a compact, medium-scale desalination system. It encompasses an extended investigation of an eductor as a condenser, or heat exchanger, for the entrained phase. Exergy study, experimental measurement, and computational analysis are the primary methodologies employed in this work. The target parameters of the optimization work were set through exergetic analysis to identify the region of maximum exergy destruction. In the case of water and water vapor as primary and secondary fluids, mixing and condensation initiates in the mixing chamber of the eductor and is where the maximum exergy destruction was calculated. Therefore, multi-jet primary nozzle eductors were studied to determine the effect of increased interphase interaction area on the exergy destruction and the maximum suction and cooling capacities. Increases in the entrainment ratio, condensation rate and heat transfer coefficient were noted for increasing numbers of nozzles when comparing one-, two- and three-jet eductors.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference23 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3