Lean Methane Mixtures in Turbulent Jet Ignition Combustion System

Author:

Pielecha Ireneusz1ORCID,Szwajca Filip1ORCID

Affiliation:

1. Faculty of Civil and Transport Engineering, Poznan University of Technology, 60-965 Poznan, Poland

Abstract

The development of modern vehicle drives is aimed at reducing fuel consumption (i.e., crude oil) and minimizing the exhaust emission of toxic components. One such development is the implementation of a two-stage combustion system. Such a system initiates ignition in the prechamber, and then the burning mixture flows into the main chamber, where it ignites the lean mixture. The system allows the efficient combustion of lean mixtures, both liquid and gaseous fuels, in the cylinder. This article proposes a solution for internal combustion engines with a cylinder capacity of approx. 500 cm3. The tests were carried out on a single-cylinder engine powered by pure methane supplied through a double, parallel injection system. A wide range of charge ignitability requires the use of an active chamber containing an injector and a spark plug. The tests were carried out at n = 1500 rpm with three load values (indicated mean effective pressure, IMEP): 2, 4 and 6 bar. All of these tests were carried out at a constant value of the center of combustion (CoC), 8 deg CA. This approach resulted in the ignition timing being the control signal for the CoC. As a result of the conducted research, it was found that an increase in the load, which improved the inter-chamber flow, allowed for the combustion of leaner mixtures without increasing the coefficient of variation, CoV(IMEP). The tests achieved a lean mixture combustion with a value of λ = 1.7 and an acceptable level of non-uniformity of the engine operation, CoV(IMEP) < 8%. The engine’s indicated efficiency when using a two-stage system reached a value of about 42% at λ = 1.5 (which is about 8 percentage points more than with a conventional combustion system at λ = 1.0).

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference36 articles.

1. (2009). Regulation (EC) No 443/2009 of the European Parliament and of the Council of 23 April 2009 Setting Emission Performance Standards for New Passenger Cars as Part of the Community’s Integrated Approach to Reduce CO2 Emissions from Light-Duty Vehicles (Standard No. (EC) No 443/2009). Available online: http://data.europa.eu/eli/reg/2009/443/2018-05-17.

2. (2011). Regulation (EU) No 510/2011 of the European Parliament and of the Council of 11 May 2011 Setting Emission Performance Standards for New Light Commercial Vehicles as Part of the Union’s Integrated Approach to Reduce CO2 Emissions from Light-Duty Vehicles (Standard No. (EU) No 510/2011). Available online: http://data.europa.eu/eli/reg/2011/510/2019-07-08.

3. Investigation of in-cylinder combustion deterioration of diesel engines in plateau regions;Meng;Fuel,2022

4. Automobile Manufacturers’ Association (2022). 2022 Progress Report. Making the Transition to Zero-Emission Mobility. Enabling Factors for Alternatively-Powered Cars and Vans in the European Union. European, European Automobile Manufacturers Association. Available online: https://www.acea.auto/files/ACEA_progress_report_2022.pdf.

5. (2019). Regulation (EU) No 2019/631 of the European Parliament and of the Council of 17 April 2019 Setting CO2 Emission Performance Standards for New Passenger Cars and for New Light Commercial Vehicles, and Repealing Regulations (EC) No 443/2009 and (EU) No 510/2011 (Recast) (Text with EEA Relevance) (Standard No. (EU) No 2019/631). Available online: http://data.europa.eu/eli/reg/2019/631/2021-12-02.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3