Saliency-Guided Point Cloud Compression for 3D Live Reconstruction

Author:

Ruiu Pietro1ORCID,Mascia Lorenzo1ORCID,Grosso Enrico1ORCID

Affiliation:

1. Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy

Abstract

3D modeling and reconstruction are critical to creating immersive XR experiences, providing realistic virtual environments, objects, and interactions that increase user engagement and enable new forms of content manipulation. Today, 3D data can be easily captured using off-the-shelf, specialized headsets; very often, these tools provide real-time, albeit low-resolution, integration of continuously captured depth maps. This approach is generally suitable for basic AR and MR applications, where users can easily direct their attention to points of interest and benefit from a fully user-centric perspective. However, it proves to be less effective in more complex scenarios such as multi-user telepresence or telerobotics, where real-time transmission of local surroundings to remote users is essential. Two primary questions emerge: (i) what strategies are available for achieving real-time 3D reconstruction in such systems? and (ii) how can the effectiveness of real-time 3D reconstruction methods be assessed? This paper explores various approaches to the challenge of live 3D reconstruction from typical point cloud data. It first introduces some common data flow patterns that characterize virtual reality applications and shows that achieving high-speed data transmission and efficient data compression is critical to maintaining visual continuity and ensuring a satisfactory user experience. The paper thus introduces the concept of saliency-driven compression/reconstruction and compares it with alternative state-of-the-art approaches.

Funder

Italian Ministry for Research and Education

National Recovery and Resilience Plan

European Union

Publisher

MDPI AG

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3