Surface Modification of PVDF and PTFE Hollow Fiber Membranes for Enhanced Nitrogen Removal in a Membrane-Aerated Biofilm Reactor

Author:

Zai Wenfeng12,Chen Yangman23,Qin Qingdong3,Li Xiangkun1,Liu Dezhao24ORCID

Affiliation:

1. School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin 300401, China

2. Institute of Agri-Biological Environment Engineering, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China

3. School of Civil Engineering, Southeast University, Nanjing 211189, China

4. Key Laboratory of Equipment and Informatization in Environment Controlled Agriculture from Ministry of Agriculture and Rural Affairs of China, Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Hangzhou 310058, China

Abstract

Microporous membranes such as polytetrafluoroethylene (PTFE) and polyvinylidene fluoride (PVDF) often exhibit suboptimal hydrophilicity and microbial adhesion, which impede effective nitrogen removal in membrane-aerated biofilm reactors (MABRs), particularly during initial operational phases. To address this issue, the present study introduced acrylic acid (AA) following plasma treatment (P) to enhance membrane performance, thereby engineering a novel composite material optimized for MABR applications. Four MABRs—Reactor with pristine PVDF membrane (R-PVDF), Reactor with composite PVDF membrane (R-PVDF-P-AA), Reactor with pristine PTFE membrane (R-PTFE), and Reactor with composite PTFE membrane (R-PTFE-P-AA)—were evaluated. The modified membranes displayed enhanced roughness and hydrophilicity, which improved biocompatibility and variably increased the oxygen transfer efficiency. Notably, the R-PVDF-P-AA configuration showed a significant enhancement in the removal rates of NH4+-N and total nitrogen (TN), achieving 78.5% and 61.3%, respectively, which was markedly higher than those observed with the original membranes. In contrast, the modified R-PTFE-P-AA exhibited lower removal efficiencies, with NH4+-N and TN reductions of approximately 60.0% and 49.5%. Detailed microbial community analysis revealed that the R-PVDF-P-AA membrane supported robust commensalism between ammonia-oxidizing and denitrifying bacteria, underpinning the improved performance. These findings highlight the critical role of surface chemistry and microbial ecology in optimizing the function of MABRs.

Funder

Key Research and Development Program of Zhejiang Province

National Key R&D Program of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3