Improvement in the Tracking Performance of a Maneuvering Target in the Presence of Clutter

Author:

Shah Ghawas Ali,Khan Sumair,Memon Sufyan AliORCID,Shahzad MohsinORCID,Mahmood ZahidORCID,Khan UzairORCID

Abstract

The proposed work uses fixed lag smoothing on the interactive multiple model-integrated probabilistic data association algorithm (IMM-IPDA) to enhance its performance. This approach makes use of the advantages of the fixed lag smoothing algorithm to track the motion of a maneuvering target while it is surrounded by clutter. The suggested method provides a new mathematical foundation in terms of smoothing for mode probabilities in addition to the target trajectory state and target existence state by including the smoothing advantages. The suggested fixed lag smoothing IMM-IPDA (FLs IMM-IPDA) method’s root mean square error (RMSE), true track rate (TTR), and mode probabilities are compared to those of other recent algorithms in the literature in this study. The results clearly show that the proposed algorithm outperformed the already-known methods in the literature in terms of these above parameters of interest.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference34 articles.

1. Estimation with Applications to Tracking and Navigation: Theory Algorithms and Software;Bar-Shalom,2004

2. Survey of maneuvering target tracking. Part V. Multiple-model methods;Li;IEEE Trans. Aerosp. Electron. Syst.,2005

3. A comparison of interactive multiple modeling algorithms for maneuvering targets tracking;Yuan;Proceedings of the IEEE 6th International Conference on Information Science and Control Engineering (ICISCE),2019

4. Improved interactive multiple model filter for maneuvering target tracking;Li;Proceedings of the IEEE Proceedings of the 33rd Chinese Control Conference,2014

5. Constrained Multiple Model Particle Filtering for Bearings-Only Maneuvering Target Tracking

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Multi-Tracking Sensor Architectures for Reconstructing Autonomous Vehicle Crashes: An Exploratory Study;Sensors;2024-06-27

2. A Novel Tracking Algorithm Based on Waveform Selection for Maneuvering Targets in Clutter;Circuits, Systems, and Signal Processing;2024-02-14

3. Radar Error Correlation Analysis Under the Simultaneous Observation of Double Targets;IEEE Access;2024

4. Unsupervised Vessel Segmentation Technique Using LTP and PCA;2023 International Conference on Communication Technologies (ComTech);2023-03-15

5. Track Coalescence Avoidance in Multi-target Tracking;2023 4th International Conference on Advancements in Computational Sciences (ICACS);2023-02-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3