Micro Electrochemical Milling of Micro Metal Parts with Rotating Ultrasonic Electrode

Author:

Liu YongORCID,Chen Haoran,Wang Shenghai,Wang Kan,Li Minghao,Peng Tengfei

Abstract

With the rapid development of MEMS, the demand for metal microstructure is increasing. Micro electrochemical milling technology (MECM) is capable of manufacturing micro metallic devices or components based on the principle of electrochemical anode dissolution. To improve the capacity of MECM, this paper presents a compound method named ultrasonic vibration-assisted micro electrochemical milling technology (UA-MECM). Firstly, the simulation and mathematical model of UA-MECM process is established to explain the mechanism of ultrasonic vibration on micro electrochemical milling. Then, the effects of ultrasonic parameters, electrical parameters and feedrate on machining localization and surface quality are discussed considering sets of experiments. The surface roughness was effectively reduced from Ra 0.83 to Ra 0.26 µm with the addition of ultrasonic vibration. It turns out that ultrasonic vibration can obviously improve machining precision, efficiency and quality. Finally, two- and three-dimensional microstructures with good surface quality were successful fabricated. It shows that ultrasonic vibration-assisted electrochemical milling technology has excellent machining performance, which has potential and broad industrial application prospects.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3