Convolutional Autoencoder-Based Flaw Detection for Steel Wire Ropes

Author:

Zhang GuoyongORCID,Tang ZhaohuiORCID,Zhang JinORCID,Gui Weihua

Abstract

Visual perception-based methods are a promising means of capturing the surface damage state of wire ropes and hence provide a potential way to monitor the condition of wire ropes. Previous methods mainly concentrated on the handcrafted feature-based flaw representation, and a classifier was constructed to realize fault recognition. However, appearances of outdoor wire ropes are seriously affected by noises like lubricating oil, dust, and light. In addition, in real applications, it is difficult to prepare a sufficient amount of flaw data to train a fault classifier. In the context of these issues, this study proposes a new flaw detection method based on the convolutional denoising autoencoder (CDAE) and Isolation Forest (iForest). CDAE is first trained by using an image reconstruction loss. Then, it is finetuned to minimize a cost function that penalizes the iForest-based flaw score difference between normal data and flaw data. Real hauling rope images of mine cableways were used to test the effectiveness and advantages of the newly developed method. Comparisons of various methods showed the CDAE-iForest method performed better in discriminative feature learning and flaw isolation with a small amount of flaw training data.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3