Author:
Nan Jing,Li Hua,Wan Xiaodong,Huo Feng,Lin Fuchang
Abstract
The composite crossarm insulator differs greatly from the suspension insulator in structure and arrangement. This study aims to determine the pollution flashover characteristics of composite crossarm insulators under different voltage grades. Four types of AC composite crossarm insulators with diameters ranging from 100 mm to 450 mm are subjected to artificial pollution test, and then the effects of the surface hydrophobicity state of silicone rubber, core diameter, umbrella structure, arrangement, and insulation distance on the pollution flashover voltage of the composite crossarm insulators are analyzed. Under the pollution grade 0.2/1.0 mg/cm2 and voltage grade from 66 kV to 1000 kV, if the silicone rubber surface changes from HC5 to HC6, the pollution flashover voltage of the composite crossarm insulator will increase by 13.5% to 21.0% compared with the hydrophilic surface. If the core diameter changes from 100 mm to 300 mm, the pollution flashover voltage gradient decreases with the increase in core diameter; if the core diameter changes from 300 mm to 450 mm, the pollution flashover voltage gradient increases with core diameter. Under the same insulation height and core diameter, the umbrella structure will have a certain impact on pollution flashover voltage by up to 1.7% to 5.4%. Under the horizontal arrangement, the pollution flashover voltage can increase by 10.5% to 12.1% compared with that under the vertical arrangement. Under the hydrophilic surface and weak hydrophobicity state, the pollution flashover voltage has a linear relationship with the insulation distance. The above results can provide a reference for the structural design and optimization of the composite crossarm insulator.
Funder
Science and Technology Project of State Grid
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献