Novel Fuzzy Control Energy Management Strategy for Fuel Cell Hybrid Electric Vehicles Considering State of Health

Author:

Hu XiaoORCID,Liu Shikun,Song Ke,Gao Yuan,Zhang Tong

Abstract

Due to the low efficiency and high pollution of conventional internal combustion engine vehicles, the fuel cell hybrid electric vehicles are expected to play a key role in the future of clean energy transportation attributed to the long driving range, short hydrogen refueling time and environmental advantages. The development of energy management strategies has an important impact on the economy and durability, but most strategies ignore the aging of fuel cells and the corresponding impact on hydrogen consumption. In this paper, a rule-based fuzzy control strategy is proposed based on the constructed data-driven online estimation model of fuel cell health. Then, a genetic algorithm is used to optimize this fuzzy controller, where the objective function is designed to consider both the economy and durability by combining the hydrogen consumption cost and the degradation cost characterized by the fuel cell health status. Considering that the rule-based strategy is more sensitive to operating conditions, this paper uses an artificial neural network for predictive control. The results are compared with those obtained from the genetic algorithm optimized fuzzy controller and are found to be very similar, where the prediction accuracy is assessed using MAPE, RMSE and 10-fold cross-validation. Experiments show that the developed strategy has a good generalization capability for variable driving cycles.

Funder

National Key Research and Development Program of China

Natural Science Foundation of Shanghai

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3