Author:
Mallek Moadh,Tang Yingjie,Lee Jaecheol,Wassar Taoufik,Franchek Matthew A.,Pickett Jay
Abstract
A two-dimensional mathematical model estimating the torque of a Halbach Array surface permanent magnet (SPM) motor with a non-overlapping winding layout is developed. The magnetic field domain for the two-dimensional (2-D) motor model is divided into five regions: slots, slot openings, air gap, rotor magnets and rotor back iron. Applying the separation of variable method, an expression of magnetic vector potential distribution can be represented as Fourier series. By considering the interface and boundary conditions connecting the proposed regions, the Fourier series constants are determined. The proposed model offers a computationally efficient approach to analyze SPM motor designs including those having a Halbach Array. Since the tooth-tip and slots parameters are included in the model, the electromagnetic performance of an SPM motor, described using the cogging torque, back-EMF and electromagnetic torque, can be calculated as function of the slots and tooth-tips effects. The proposed analytical predictions are compared with results obtained from finite-element analysis. Finally, a performance comparison between a conventional and Halbach Array SPM motor is performed.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献