Aluminium-Based Plasmonic Sensors in Ultraviolet

Author:

Karpiński KarolORCID,Zielińska-Raczyńska SylwiaORCID,Ziemkiewicz DavidORCID

Abstract

We theoretically investigate the surface plasmon polaritons (SPPs) generated on an Al film covered by an Al2O3 layer in the context of their application as refractive index sensors. The calculated reflection spectra indicate SPP resonance excited by ultraviolet light, which was affected by the thickness of both the metal and the oxide layers on the surface. With optimized geometry, the system can work as a tunable sensor with a wide UV wavelength range λ∼ 150–300 nm. We report a quality factor of up to 10 and a figure of merit on the order of 9, and these are comparable to the performance of more complicated UV plasmonic nanostructures and allow for the detection of a 1% change of the refraction index. The sensor can operate on the basis of either the incidence angle or wavelength changes. The effect of oxide surface roughness is also investigated with an emphasis on amplitude-based refraction index sensing.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3