Abstract
Predictive analytics is usually cited as one of the most important pillars of the digital transformation. For the oil industry, specifically, it is a common belief that issues like integrity and maintenance could benefit from predictive analytics. This paper presents the development and the application of a process-monitoring tool in a real process facility. The PMA (Predictive Maintenance Application) system is a data-driven application that uses a multivariate analysis in order to predict the system behavior. Results show that the use of a multivariate approach for process monitoring could not only detect an early failure at a metering system days before the operation crew, but could also successfully identify, among hundreds of variables, the root cause of the abnormal situation. By applying such an approach, a better performance of the monitored equipment is expected, decreasing its downtime.
Subject
Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献