BEM2, a RHO GTPase Activating Protein That Regulates Morphogenesis in S. cerevisiae, Is a Downstream Effector of Fungicidal Action of Fludioxonil

Author:

Sharma AnupamORCID,Martoliya Yogita,Mondal Alok K.

Abstract

Fludioxonil belongs to the phenylpyrrole group of fungicides with a broad antifungal spectrum that has been widely used in agricultural practices for the past thirty years. Although fludioxonil is known to exert its fungicidal action through group III hybrid histidine kinases, the downstream effector of its cytotoxicity is poorly understood. In this study, we utilized a S. cerevisiae model to decipher the cytotoxic effect of fludioxonil. Through genome wide transposon mutagenesis, we have identified Bem2, a Rho GTPase activating protein, which is involved in this process. The deletion of BEM2 resulted in fludioxonil resistance. Our results showed that both the GAP and morphogenesis checkpoint activities of Bem2 were important for this. We also provided the genetic evidence that the role of Bem2 in the cell wall integrity (CWI) pathway and cell cycle regulation could contribute to the fludioxonil resistance phenotype.

Funder

Science and Engineering Research Board

Publisher

MDPI AG

Subject

Plant Science,Ecology, Evolution, Behavior and Systematics,Microbiology (medical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3