Meta-Transcriptomic Analysis of RNAseq Data Reveals Pacu and Loach Fish with Unusually High Levels of Myoglobin Expression in Skeletal Muscles

Author:

Chen Rui-Yi,Ngoc Hieu Bui Thi,Audira Gilbert,Lou Bao,Lin Ming-DerORCID,Hsiao Chung-DerORCID

Abstract

Oxygen-binding proteins, such as myoglobin, hemoglobin, neuroglobin, and cytoglobin, play a role in oxygen binding and delivery to tissues. In icefish, the loss of myoglobin and hemoglobin genes has been reported to be an adaptive evolution event. This interesting finding prompted us to exam oxygen-binding protein expression in diverse fish species. Taking advantage of substantial RNAseq data deposited in the NCBI (National Center for Biotechnology Information) database, we adopted a meta-transcriptomic approach to explore and compare four oxygen-binding protein gene expression levels in the skeletal muscle of 25 diverse fish species for the first time. RNAseq data were downloaded from the NCBI Sequence Read Archive (SRA) database, and de novo assembly was performed to generate transcript contigs. The genes encoding oxygen-binding proteins were then identified by the BLAST search, and the relative expression level of oxygen-binding protein genes was normalized by the RPKM (Reads per Kilobase Million) method. By performing expression profiling, hierarchy clustering, and principal component analysis, pacu and loach fish were noticed by their high myoglobin expression levels in skeletal muscle tissues among 25 diverse fish species. In conclusion, we demonstrated that meta-transcriptomic analysis of RNAseq data is an informative approach to compare the oxygen-binding protein expression and putative gene expansion event in fish.

Funder

Ministry of Science Technology, Taiwan

Publisher

MDPI AG

Subject

General Veterinary,Animal Science and Zoology

Reference34 articles.

1. Oxygen-binding haem proteins

2. Oxygen-dependent gene expression in fishes

3. Functional adaptations of oxygen-transport proteins;Terwilliger;J. Exp. Biol.,1998

4. Aquaculture Engineering;Lekang,2013

5. Myoglobin-mediated oxygen delivery to mitochondria of isolated cardiac myocytes.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3