Antioxidative Potential of Red Deer Embryos Depends on Reproductive Stage of Hind as a Oocyte Donor

Author:

Korzekwa Anna J.ORCID,Kotlarczyk Angelika M.,Szczepańska Agata A.,Grzyb Martyna,Siergiej Alicja,Wocławek-Potocka Izabela

Abstract

The aim was to compare the blastocyst stages of red deer embryos in respect of in vitro fertilization (IVF) efficiency, morphology, apoptotic and proliferative abilities, and antioxidative potential according to the reproductive status of hinds. We used three experimental groups, including the ovaries collected post mortem on the 4th and 13th days of the estrous cycle and during pregnancy (n = 18). After oocyte maturation, frozen-thawed epididymal semen was used for IVF. Blastocyst quality, apoptotic potential by determining the mRNA expression of BAX, BCL-2, OCT4, SOX2, and placenta-specific 8 gene (PLAC8), and antioxidative potential of blastocysts were evaluated by determining the mRNA expression of CuSOD, MnSOD, and GPX as well as the enzymatic activity of superoxide dismutase and reduced glutathione. The highest development rate of expanded blastocyst, mRNA expression of BCL-2, OCT4, SOX2, and PLAC8 and mRNA expression and enzymatic activity of the antioxidative factors increased (p < 0.05) in blastocysts developed from the oocytes collected on the 4th day, compared to those developed from the oocytes collected on the 13th day of the cycle and during pregnancy. Our study indicates that the 4th day of the estrous cycle is the most effective period for oocyte collection for IVF and embryo development in hinds, considering quality parameters and antioxidative potential of the blastocysts.

Funder

Narodowe Centrum Nauki

Publisher

MDPI AG

Subject

General Veterinary,Animal Science and Zoology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3