Four-Year Field Survey of Black Band Disease and Skeletal Growth Anomalies in Encrusting Montipora spp. Corals around Sesoko Island, Okinawa

Author:

Das Rocktim Ramen,Wada Haruka,Masucci Giovanni Diego,Singh Tanya,Tavakoli-Kolour ParvizORCID,Wada NaohisaORCID,Tang Sen-Lin,Yamashiro Hideyuki,Reimer James DavisORCID

Abstract

The Indo-Pacific zooxanthellate scleractinian coral genus Montipora is the host of many coral diseases. Among these are cyanobacterial Black Band Disease (BBD) and Skeletal Growth Anomalies (GAs), but in general data on both diseases are lacking from many regions of the Indo-Pacific, including from Okinawa, southern Japan. In this study, we collected annual prevalence data of Black Band Disease (BBD) and Skeletal Growth Anomalies (GAs) affecting the encrusting form of genus Montipora within the shallow reefs of the subtropical Sesoko Island (off the central west coast of Okinawajima Island) from summer to autumn for four years (2017 to 2020). In 2020 Montipora percent coverage and colony count were also assessed. Generalized Linear Models (GLM) were used to understand the spatial and temporal variation of both BBD and GAs in the nearshore (NE) and reef edge (RE) sites, which revealed higher probability of BBD occurrence in RE sites. BBD prevalence was significantly higher in 2017 in some sites than all other years with site S12 having significant higher probability during all four surveyed years. In terms of GAs, certain sites in 2020 had higher probability of occurrence than during the other years. While the general trend of GAs increased from 2017 to 2020, it was observed to be non-fatal to colonies. In both diseases, the interaction between sites and years was significant. We also observed certain BBD-infected colonies escaping complete mortality. BBD progression rates were monitored in 2020 at site S4, and progression was related to seawater temperatures and was suppressed during periods of heavy rain and large strong typhoons. Our results suggest that higher BBD progression rates are linked with high sea water temperatures (SST > bleaching threshold SST) and higher light levels (>1400 µmol m−2 s−1), indicating the need for further controlled laboratory experiments. The current research will help form the basis for continued future research into these diseases and their causes in Okinawa and the Indo-Pacific Ocean.

Funder

Ministry of Education, Culture, Sports, Science and Technology

Publisher

MDPI AG

Subject

Nature and Landscape Conservation,Agricultural and Biological Sciences (miscellaneous),Ecological Modeling,Ecology

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3