Preparation of Nanocellulose Aerogel from the Poplar (Populus tomentosa) Catkin Fiber

Author:

Wu ,Sun ,Wu ,Shi ,Chen ,Wang

Abstract

: The effects of chemical pretreatment on the purification of poplar (Populus tomentosa) catkin fiber and the effect of ultrasonic time for the microfibrillarization of poplar catkin fiber (PCF) were studied. The nanocellulose aerogels were prepared by freeze drying the cellulose solutions. The density, porosity, micro morphology, thermal stability and mechanical properties of the aerogels were analyzed. It was found that the dewaxing time of PCF is shorter than that of unsonicated nanocellulose. After the treatment of 0.5 wt% sodium chlorite for 2 h, the lignin of PCF was removed. After the chemical purification, the PCF was treated with 2 and 5 wt% NaOH solution and ultrasonicated for 5 and 10 min, respectively. When the ultrasonic time was 10 min, the diameter of the nanocellulose was 20-25 nm. When the ultrasonic time was 5 min, the aerogels with porous honeycomb structure can be prepared by using the nanocellulose sol of PCF as raw material. The density of the aerogels was only 0.3-0.4 mg/cm3 and the porosities of the aerogels were all larger than 99%. The difference between the pyrolysis temperature of aerogels was small, the elastic modulus of aerogels was 30–52 kPa, and the compressive strength was 22–27 kPa. With the increase of the concentration of NaOH solution (5 wt%) and ultrasonic time (10 min), the elastic modulus of aerogels increased gradually and reached the maximum value of 52 kPa, while the compressive strength reached the maximum value of 27 kPa when the PCF being treated in 5 wt% NaOH solution and was ultrasonicated for 5 min.

Funder

the Basic Sientific Research Funds of International Center for Bamboo and Rattan

Publisher

MDPI AG

Subject

Forestry

Reference35 articles.

1. Morphological structure and application of poplar catkin fiber;Yin;Shandong Text. Econ.,2013

2. Property and collection application of poplar down fiber;Yin;Cotton Text. Technol.,2011

3. Microfibrillated cellulose and new nanocomposite materials: a review

4. Optically Transparent Nanofiber Paper

5. Effect of Kraft Pulping Pretreatment on the Chemical Composition, Enzymatic Digestibility, and Sugar Release of Moso Bamboo Residues

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3