Understory Plant Functional Types Alter Stoichiometry Correlations between Litter and Soil in Chinese Fir Plantations with N and P Addition

Author:

Xie Junyi,Fang Haifu,Zhang Qiang,Chen Mengyun,Xu Xintong,Pan Jun,Gao Yu,Fang Xiangmin,Guo Xiaomin,Zhang Ling

Abstract

Research Highlights: This study identifies the effect of nitrogen (N) and phosphorus (P) addition on stoichiometry correlations between understory plants and soil in subtropical Chinese fir plantations. Background and Objectives: Nitrogen and P are two nutrients limiting forest ecosystem production. To obtain more wood production, N and P are usually applied in plantation management. Changes in soil N and P will generally alter the stoichiometric characteristics of understory plants, which control carbon (C) and nutrient cycles between plants and soil. However, different correlations between plant and soil stoichiometry among functional groups of understory plants have not been investigated, which also impacted element cycling between plants and soil. Materials and Methods: Subtropical Chinese fir plantations were selected for N (100 kg ha−1 year−1) and P (50 kg ha−1 year−1) addition study. We collected fresh litter and the corresponding soil of four understory plants (Lophatherum gracile Brongn., Woodwardia japonica (L.f.) Sm., Dryopteris atrata (Kunze) Ching and Dicranopteris dichotoma (Thunb.) Berhn.) for study of C, N, and P stoichiometric ratios. Results: Nitrogen and P addition affected C, N, and P concentrations and stoichiometric ratios in litter and soil as well as correlations between litter and soil stoichiometric ratios. Understory plant species with different functional types impacted the correlations between plants and soil in C, N, and P stoichiometric ratios, especially correlations between litter C and soil C and N. Conclusions: Changes in soil N and P affect the stoichiometric ratios of understory plants. Functional groups impacted the correlation in C, N, and P stoichiometric ratios between plants and soil, indicating functional groups varied in their impacts on element cycling between plants and soil in plantations with exogenous nutrient addition, which should be considered in future management of plantations with intensive fertilization practice.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3