New Ensemble Models for Shallow Landslide Susceptibility Modeling in a Semi-Arid Watershed

Author:

Tien Bui Dieu,Shirzadi AtaollahORCID,Shahabi HimanORCID,Geertsema Marten,Omidvar EbrahimORCID,Clague JohnORCID,Thai Pham BinhORCID,Dou Jie,Talebpour Asl Dawood,Bin Ahmad Baharin,Lee SaroORCID

Abstract

We prepared a landslide susceptibility map for the Sarkhoon watershed, Chaharmahal-w-bakhtiari, Iran, using novel ensemble artificial intelligence approaches. A classifier of support vector machine (SVM) was employed as a base classifier, and four Meta/ensemble classifiers, including Adaboost (AB), bagging (BA), rotation forest (RF), and random subspace (RS), were used to construct new ensemble models. SVM has been used previously to spatially predict landslides, but not together with its ensembles. We selected 20 conditioning factors and randomly portioned 98 landslide locations into training (70%) and validating (30%) groups. Several statistical metrics, including sensitivity, specificity, accuracy, kappa, root mean square error (RMSE), and area under the receiver operatic characteristic curve (AUC), were used for model comparison and validation. Using the One-R Attribute Evaluation (ORAE) technique, we found that all 20 conditioning factors were significant in identifying landslide locations, but “distance to road” was found to be the most important. The RS (AUC = 0.837) and RF (AUC = 0.834) significantly improved the goodness-of-fit and prediction accuracy of the SVM (AUC = 0.810), whereas the BA (AUC = 0.807) and AB (AUC = 0.779) did not. The random subspace based support vector machine (RSSVM) model is a promising technique for helping to better manage land in landslide-prone areas.

Funder

Basic Research Project of the Korea Institute of Geoscience, Mineral Resources (KIGAM)

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3