Abstract
Copper is a mineral element essential for the normal growth and development of plants; however, excessive levels can severely affect plant growth and development. Oryza sativa L. multiple stress-responsive gene 3 (OsMSR3) is a small, low-molecular-weight heat shock protein (HSP) gene. A previous study has shown that OsMSR3 expression improves the tolerance of Arabidopsis to cadmium stress. However, the role of OsMSR3 in the Cu stress response of plants remains unclear, and, thus, this study aimed to elucidate this phenomenon in Arabidopsis thaliana, to further understand the role of small HSPs (sHSPs) in heavy metal resistance in plants. Under Cu stress, transgenic A. thaliana expressing OsMSR3 showed higher tolerance to Cu, longer roots, higher survival rates, biomass, and relative water content, and accumulated more Cu, abscisic acid (ABA), hydrogen peroxide, chlorophyll, carotenoid, superoxide dismutase, and peroxidase than wild-type plants did. Moreover, OsMSR3 expression in A. thaliana increased the expression of antioxidant-related and ABA-responsive genes. Collectively, our findings suggest that OsMSR3 played an important role in regulating Cu tolerance in plants and improved their tolerance to Cu stress through enhanced activation of antioxidative defense mechanisms and positive regulation of ABA-responsive gene expression.
Funder
National Natural Science Foundation of China
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Cited by
28 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献