Can Alkaline Hydrolysis of γ-HCH Serve as a Model Reaction to Study Its Aerobic Enzymatic Dehydrochlorination by LinA?

Author:

Kannath Suraj,Adamczyk Paweł,Wu Langping,Richnow Hans H.,Dybala-Defratyka AgnieszkaORCID

Abstract

Hexachlorocyclohexane (HCH) isomers constitute a group of persistent organic pollutants. Their mass production and treatment have led to a global environmental problem that continues to this day. The characterization of modes of degradation of HCH by isotope fractionation is a current challenge. Multi isotope fractionation analysis provides a concept to characterize the nature of enzymatic and chemical transformation reactions. The understanding of the kinetic isotope effects (KIE) on bond cleavage reaction contributes to analyses of the mechanism of chemical and enzymatic reactions. Herein, carbon, chlorine, and hydrogen kinetic isotope effects are measured and predicted for the dehydrochlorination reaction of γ-HCH promoted by the hydroxyl ion in aqueous solution. Quantum mechanical (QM) microsolvation with an implicit solvation model and path integral formalism in combination with free-energy perturbation and umbrella sampling (PI-FEP/UM) and quantum mechanical/molecular mechanical QM/MM potentials for including solvent effects as well as calculating isotope effects are used and analyzed with respect to their performance in reproducing measured values. Reaction characterization is discussed based on the magnitudes of obtained isotope effects. The comparative analysis between the chemical dehydrochlorination of γ-HCH in aqueous media and catalyzed reaction by dehydrochlorinase, LinA is presented and discussed. Based on the values of isotope effects, these two processes seem to occur via the same net mechanism.

Funder

Narodowe Centrum Nauki

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Reference58 articles.

1. Thyroid disruption at birth due to prenatal exposure to β-hexachlorocyclohexane

2. Carcinogenicity of lindane, DDT, and 2,4-dichlorophenoxyacetic acid

3. Stockholm Convention on Persistent Organic Pollutantshttp://www.pops.int/TheConvention/ThePOPs/TheNewPOPs/tabid/2511/Default.aspx

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3