Heterogeneous Pattern of Dependence on Anti-Apoptotic BCL-2 Family Proteins upon CHOP Treatment in Diffuse Large B-Cell Lymphoma

Author:

de Jong Mathilde Rikje Willemijn,Langendonk Myra,Reitsma Bart,Nijland MarcelORCID,van den Berg AnkeORCID,Ammatuna Emanuele,Visser Lydia,van Meerten TomORCID

Abstract

Expression of the anti-apoptotic B-cell lymphoma 2 (BCL-2) protein in patients with diffuse large B-cell lymphoma (DLBCL) strongly correlates with resistance to standard therapy with cyclophosphamide, vincristine, doxorubicin, prednisolone, and rituximab (R-CHOP). Although studies focus mainly on the contribution of BCL-2, here we also investigate the contribution of other anti-apoptotic proteins to CHOP-therapy resistance in DLBCL. Functional dynamic BCL-2 homology (BH)3 profiling was applied to DLBCL cell lines upon CHOP treatment or single CHOP compounds. Cell-specific anti-apoptotic dependencies were validated with corresponding BH3-mimetics. We found high expression of anti-apoptotic BCL-2, MCL-1, and BCL-XL in DLBCL cell lines and patients. CHOP treatment resulted in both enhanced and altered anti-apoptotic dependency. Enhanced sensitivity to different BH3-mimetics after CHOP treatment was confirmed in specific cell lines, indicating heterogeneity of CHOP-induced resistance in DLBCL. Analysis of single CHOP compounds demonstrated that similar changes could also be induced by doxorubicin or vincristine, providing evidence for clinical combination therapies of doxorubicin or vincristine with BH3-mimetics in DLBCL. In conclusion, we show for the first time that CHOP treatment induces increased anti-apoptotic dependency on MCL-1 and BCL-XL, and not just BCL-2. These results provide new perspectives for the treatment of CHOP-resistant DLBCL and underline the potential of BH3 profiling in predicting therapy outcomes.

Funder

KWF Kankerbestrijding

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3