Hydrothermal Fluids and Cold Meteoric Waters along Tectonic-Controlled Open Spaces in Upper Cretaceous Carbonate Rocks, NE-Iraq: Scanning Data from In Situ U-Pb Geochronology and Microthermometry

Author:

Salih Namam,Mansurbeg Howri,Muchez PhilippeORCID,Gerdes AxelORCID,Préat Alain

Abstract

The Upper Cretaceous carbonates along the Zagros thrust-fold belt “Harir-Safin anticlines” experienced extensive hot brine fluids that produced several phases of hydrothermal cements, including saddle dolomites. Detailed fluid inclusion microthermometry data show that saddle dolomites precipitated from hydrothermal (83–160 °C) and saline fluids (up to 25 eq. wt.% NaCl; i.e., seven times higher than the seawater salinity). The fluids interacted with brine/rocks during their circulation before invading the Upper Cretaceous carbonates. Two entrapment episodes (early and late) of FIs from the hydrothermal “HT” cements are recognized. The early episode is linked to fault-related fractures and was contemporaneous with the precipitation of the HT cements. The fluid inclusions leaked and were refilled during a later diagenetic phase. The late episode is consistent with low saline fluids (0.18 and 2.57 eq. wt.% NaCl) which had a meteoric origin. Utilizing the laser ablation U-Pb age dating method, two numerical absolute ages of ~70 Ma and 3.8 Ma are identified from calcrete levels in the Upper Cretaceous carbonates. These two ages obtained in the same level of calcrete indicate that this unit was twice exposed to subaerial conditions. The earlier exposure was associated with alveolar and other diagenetic features, such as dissolution, micritization, cementation, while the second calcrete level is associated with laminae, pisolitic, and microstromatolite features which formed during the regional uplifting of the area in Pliocene times. In conclusion, the hydrothermal-saddle dolomites were precipitated from high temperature saline fluids, while calcrete levels entrapped large monophase with very low salinity fluid inclusions, indicative for a low temperature precipitation from water with a meteoric origin.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3